5. Some other types of Lattice Design

(a) A lattice design in which the number of treatments is k^{2}, where k denotes block sue (number of plots in a block)and the treatments are randomized with two restrictions in L.S.D., is called a lattice square deisng. It means that a 2 -restrictional and 2 -dimensiomat lattice design is known as a lattice square design or quasi-latin square design.
(b) An experiment having $k(k+1)$ treatments can be conducted in incomplete Macke of size k with 1-restrictional randomization. Such a two-dimensional and one restrictional latho design is known as rectangular lattice design. If $k=2$ it is called simple rectangular lantoe design and if $k=3$ it is known as triple rectangular lattice design.

6. Layout of Balanced Lattice Design

We have already noticed that such a design is one restrictional and two dimensional is which the number of treatments is a perfect square (say k^{2}) and the size of incomplete ficeca is its square root $(=k)$.

We shall explain the method of layout for such a design with the help of an example.
Suppose that an experiment is conducted to compare 9 varieties of wheat as regards ficir yield in 3×3 balanced lattice design. Thus we have 9 treatments which may be represeated as- $1,2,3,4,5,6,7,8$ and 9 . The treatments and their factorial correspondence can be shows as given below :

Treatments	$:$	1	2	3	4	5	6	7	8	9
Factorial combinations	$:$	00	01	02	10	11	12	20	21	22

Here the number of treatments is $k^{2}=9$
Number of plots per block is $k=3$
Number of replications is $k+1=4$
(to confound 4 treatments)
Note : The number of replications for k treatments shall be $(k+1)$ in order to fulfilithe condition of balanced lattice design. The whole experimental area is divided into 4 replicabians and each replications is further divided into 3 incomplete blocks. Each incomplete black divided into 3 plots. In order to allocate the treatments in first replication the 9 treatmene ase divided into 3 groups, say $(1,2,3),(4,5,6),(7,8,9)$ and then these 3 groups of trewams are allocated randomly to the 3 blocks of the first replication. The 3 treatments of any goo assigned to a block are allocated randomly to the 3 plots of this block.

The same procedure is adopted for the rest of the replication subject to the condition the every combination of 3 treatments shall appear once and only once in an incomplete bleds. The final layout of experiment can be as given below.

Replication I

Block	Treatments		
(1)	3	1	2
(2)	7	9	8
(3)	5	6	4
Rep-iII			

(7)	2	5	8
(8)	1	7	4
(9)	3	9	6

8
4

Statistical analysis of a Balanced Lattice Deign:
Step 1: First we calculate block totals (B), replication totals (R) for each block and each replication seperately and finally the grand total (G).
Step 2: Now we calculate the treatment total (T) for each treatment taken over all the replication.
Step 3: Then we calculate for each treatment, the sum of block totals $\left(B_{t}\right)$ over all the block in which that treatments t is present. Here $\sum B_{t}=k G, k$ is block size and t denotes the serial number of treatments $(t=1,2, \ldots$, in on example)
Step 4: Calculate $W=k T-(k+1) B_{t}+G$ for each treatment. Here $E W=0$.
Step 5: Now we calculate the various sum of squares as follows.

$$
C \cdot F=\frac{G^{2}}{k^{2}(k+1)}
$$

Total s.S or T.S.S $=\sum y^{2}-c$.f
S.S. for replication $=\frac{\sum R^{2}}{k^{2}}-C \cdot F$

Unadjusted S.S for treatments $=\frac{\sum T^{2}}{k+1}-C \cdot F$
Adjusted S.S for blocks $=\frac{\sum W^{2}}{k^{3}(k+1)}-C \cdot F$
S.S for Intra block euror $=$ T.S.S $-S . S$ (rephication)

- unadjusted sis (treatment)
- adjusted s.s (slocks).

Step 6: Now we prepare the ANOVA table as follows.

S.V	$d . f$	S.S	M.S.S
Replication	k		
Treatment			
(anadjistid)	$k^{2}-1$		
Blocks			
(Adjinsted)	$k^{2}-1$		
Intra block Eroof	$(k-1)\left(k^{2}-1\right)$	ES.S	E.M.S
Total	$k^{2}(k+1)-1$		

Step 7: Then we calculate the value

$$
\mu=\frac{\text { Block (adj)S.S-Intra Slockerror (M.S) }}{k^{2}[\text { Block (adj) M.S }]}
$$

If the value of μ comes ont to be negative we take $\mu=0$ and when $\mu=0$ we skip the steps 8,9 and 10 .
If $\mu \neq 0$, then we follow steps 8,9 and lo also. Step 8: We calculate the adjusted treatment total ' T ' for each treatment as

$$
T^{\prime}=T+\mu W
$$

and also calculate the adjusted treatment means ' M ' for each treatment as

$$
M^{\prime}=\frac{T^{\prime}}{(k+1)}
$$

Step 9: Then we colmate adjusted treatment mean square as

$$
\text { Treatment Mos (adjusted) }=\left[\sum\left(T^{\prime}\right)^{2}-\frac{G^{2}}{k^{2}}\right]\left[\frac{1}{(k+1)\left(k^{2}-1\right)}\right]
$$

Step 10: After this, calculate effective error mean square as

Effective error M:S = (Intra block EMS) $(1+k \mu)$.

Step 11: Now Calculate

$$
\begin{aligned}
& F=\frac{\text { Treatment M.S (adjus) }}{\text { Effective error M.S } ;(\text { if } \mu>0)} \\
& F=\frac{\text { Treatment M.S (adjoins) }}{\text { Intrablock error M.S } ;(\text { if } \mu \leq 0)}
\end{aligned}
$$

Finally, the significance of value of F is tested. stop 12:

$$
\begin{gathered}
S \cdot E(d)=\sqrt{\frac{2 \text { Effective M.S }}{\gamma}} ; \text { if } \mu>0 \\
S \cdot E(d)=\sqrt{\frac{2(\text { Intrablock error } M \cdot S)}{\gamma}} \text { if } \mu \leq 0 .
\end{gathered}
$$

Then calculate

$$
C \cdot D=S \cdot E(d) \times t(\text { for error } d \cdot f)
$$

