Experimental Design

Ļ

1

đ

1

1

1

5. Some other types of Lattice Design

(a) A lattice design in which the number of treatments is k^2 , where k denotes block size (number of plots in a block) and the treatments are randomized with two restrictions as in L.S.D., is called a lattice square deisng. It means that a 2-restrictional and 2-dimensional lattice design is known as a lattice square design or quasi-latin square design.

(b) An experiment having k(k + 1) treatments can be conducted in incomplete blacks of size k with 1-restrictional randomization. Such a two-dimensional and one restrictional lattice design is known as rectangular lattice design. If k = 2 it is called simple rectangular lattice design and if k = 3 it is known as triple rectangular lattice design.

6. Layout of Balanced Lattice Design

We have already noticed that such a design is one restrictional and two dimensional in which the number of treatments is a perfect square (say k^2) and the size of incomplete blocks is its square root (= k).

We shall explain the method of layout for such a design with the help of an example.

Suppose that an experiment is conducted to compare 9 varieties of wheat as regards yield in 3×3 balanced lattice design. Thus we have 9 treatments which may be represented as-1, 2, 3, 4, 5, 6, 7, 8 and 9. The treatments and their factorial correspondence can be shown as given below :

Treatments	:	1	2	3	4	5	6	7	8	9
Factorial combinations	:	00	01	02	10	11	12	20	21	22

Here the number of treatments is $k^2 = 9$

Number of plots per block is k = 3

Number of replications is k + 1 = 4

(to confound 4 treatments)

Note : The number of replications for k treatments shall be (k + 1) in order to fulfill the condition of balanced lattice design. The whole experimental area is divided into 4 replications and each replications is further divided into 3 incomplete blocks. Each incomplete block is divided into 3 plots. In order to allocate the treatments in first replication the 9 treatments at divided into 3 groups, say (1, 2, 3), (4, 5, 6), (7, 8, 9) and then these 3 groups of treatments are allocated randomly to the 3 blocks of the first replication. The 3 treatments of any group assigned to a block are allocated randomly to the 3 plots of this block.

The same procedure is adopted for the rest of the replication subject to the condition the every combination of 3 treatments shall appear once and only once in an incomplete block The final layout of experiment can be as given below.

Replication I					Replication II				
Block	1	Freatment	S]	Block	Treatments			
(1)	3	I	2		(4)	1		5	9
(2)	7	9	8		(5)	2		7	6
(3)	5	6	4	4	(6)	8		3	4
	Rep-	- <u>1</u>				Rep	ĪV		
(7)	2	5	8		(10)	i	8	6	
(8)	1	7	4		(1)	2	4	9	
(a)	2	9	Ь		(12)	2	5	7	

Statistical analysis of a Balanced Lattice Dengo;

- Step 1: First We calculate block totals (B), replication totals (R) for each block and each replication separately and finally the grand total (G).
- Step 2: Now we calculate the treatment total (T) for each treatment taken over all the replication.
- Step 3: Then we calculate for each treatment, the sum of block totals (B_t) over all the blocks in which that treatments t is present. Here $\Sigma B_t = kGr$, k is block size and t denotes the serial number is treatments (t = 1, 2, ..., 7)in one example)
 - Step 4 : Calculate $W = kT (k+1)B_t + G_t$ for each treatment. Here ZW = 0.

Steps: Now we calculate the various men of squares as follows.

 $C \cdot F = \frac{G^2}{k^2(k+1)}$

Total S.S or T.S.S = $2y^2 - c.F$ S.S. for replication = $\frac{\Sigma R^2}{k^2} - C \cdot F$ Unadjusted S.S for tocatments = ET² - C.F KH Adjusted S. S for blocks = IN2 - C.F $k^{3}(kH)$ S.S for Intra block euror = T.S.S - S.S (replication) - unadjusted S.S (treatment) - adjusted S. S (blocks). Step 6: Now we prepare the ANOVA table as follows. SV d.f 5.5 M.S.S Replication K Treatment $k^2 - 1$ (anadjusted) Blocks $k^{2}-1$ (Adjusted) ES.S Inthe block Error (K-1)(K-1) E.M.S Total $k^{2}(k+1) - 1$

Step 7: Then we calculate the value 1 _ Block (adj) S.S - Intra block error (M.S) k2[Block (adj) M.S] If the value of 1 comes out to be negative we take M=0 and when M=0 we skip the steps 8,9 and lo. If M \$0, then we follow steps 8,9 and 10 also. Steps: We calculate the adjusted treatment total T for each treatment as and also calculate the adjusted treatment means 'M' for each treatment as $\frac{T'}{(k+1)}$ M = Step 9: Then we calculate adjusted treatment mean square as Treatment M.S (adjusted) = $\left[Z(T')^2 - \frac{G^2}{K^2}\right] \left[\frac{1}{(k+1)(k^2-1)}\right]$ Step 10; After this, calculate effective error mean quare Effective error M'S = (Intra block EMS) (1+ KM)

Step 11 : Non Calculate F = Treatment M. S (adjus) Effective error M.S ; (4 1/20) F = Treatment M.S (adjus) Intrablock error M.S ; (iy ~ < 0) significance of value of Fistested. Finally, the Sty 12: S.E (d) = J 2 Effective M.S ; if M >0 S.E(d) = 12 (Intra block errors M.S) y MED. Then calculate C.D = S.E(d) X t (for error d.f)